報告人🏜:王濤 上海交通大學博士生導師,國家優青
時間:4月13號(周四)下午15:00
騰訊會議號: 827-828-819
報告摘要#️⃣🧘🏼:The goal of dimension reduction in regression is to reduce the dimension of the predictor space without loss of information on the regression. In many fields, the predictors of a response are count-valued, including species abundance in ecological studies, phrase tokens in text mining, and panel data in econometrics. In this talk, we review the dimension-reduction methodology in regression with count-valued predictors. We follow an inverse regression approach by modeling the conditional distribution of the predictors given the response, using the Poisson independence model and its generalizations. A new proposal is then discussed.
報告人簡介🧏🏽♂️:王濤博士🥇,國家優青,上海交通大學長聘副教授,博士生導師;交大-耶魯生物統計與數據科學聯合中心研究員;國際統計學會Elected Member。研究方向為生物統計和高維數據統計推斷🕺🏽,在JASA🧛🏼♂️,JRSSB,Biometrika🍚,Genome Biology♜,Briefings in Bioinformatics🏂🏻,Bioinformatics等期刊發表論文五十余篇🛂;主持國家自然科學基金面上項目和優秀青年科學基金項目等多項。